
Using OAuth2 to Integrate RESTlike Web Services into a
SAML-based Federation

– Implementation of a Policy Decision Point –

Version: 1.0 – August 27, 2019

DARIAH-DE III:

Digitale Forschungsinfrastruktur für die Geistes- und
Kulturwissenschaften

Dieses Forschungs- und Entwicklungsprojekt wird / wurde mit Mitteln des Bundesministeriums für Bildung
und Forschung (BMBF), Förderkennzeichen 01UG1110A bis M, gefördert und vom Projektträger im

Deutschen Zentrum für Luft- und Raumfahrt (PT-DLR) betreut.

1

Projekt: DARIAH-DE III: Digitale Forschungsinfrastruktur für die Geistes- und
Kulturwissenschaften

BMBF Förderkennzeichen: 01UG1110A bis M

Laufzeit: März 2016 bis Februar 2019

Dokumentstatus: final

Verfügbarkeit: öffentlich

Autoren:

Martin Haase, DAASI International GmbH

Peter Gietz, DAASI International GmbH

Markus Widmer, DAASI International GmbH

David Hübner, DAASI International GmbH

Stefan E. Funk, SUB Göttingen

Ubbo Veentjer, SUB Göttingen

Marcel Hellkamp, GWDG

2

Progression of Revisions

Date Version Author Comments

Jun 19, 2014 Martin Haase Grundsätzliches Modell

Jul 24, 2014 Martin Haase,
Peter Gietz

Erstellung eines DARIAH internen Papiers

Jul 7, 2015 Martin Haase Spezifikation der StorageAPI

Aug 7, 2015 Martin Haase,
Peter Gietz,
Markus Widmer

Detaillierte Angaben zum RBAC-AS und LDAP-Struktur

Nov 13, 2015 Stefan E. Funk Use-Cases und benötigte Methoden hinzugefügt

Dec 1, 2015 Martin Haase Kommentare zu den Use Cases und zu Sonstiges

Dec 15, 2015 Stefan E. Funk Kapitel 4.4 näher spezifiziert, Übersichtsgrafik des DARIAH-DE
Repositorys hinzugefügt

Dec 18, 2015 Martin Haase Reduzierung der Token-Anzahl bei publish (3.1.2), Änderungen
akzeptieren

Dec 21, 2015 Stefan E. Funk Spezifikation der einzelnen REST-Methoden des PDP

Dec 30, 2015 Martin Haase,

Markus Widmer

Anpassungen im Zuge der Implementierung: LDAP-Struktur
(3.3), Pfad der PDP-Methoden (4.2)

Jan 13, 2016 Martin Haase Weitere Kommentare zum RBAC als Vorbereitung auf die
heutige (v0.10) und morgige (v0.11) Telko

Jan 14, 2016 Martin Haase Finalisierung nach heutiger Telko (v0.12), für GWDG

Jan 27, 2016 Peter Gietz Finalisierung nach heutiger Telko (v0.13): Kleinere Änderungen
an der REST API in Kap. 4.

Feb 11, 2016 Martin Haase Token-Bezug (Kap. 4.1)

Jul 13, 2016 Stefan E. Funk Allgemeine Korrekturen, Zugriff auf CDStar-Instanz ergänzt

Jul 29, 2016 Martin Haase Kommentare

Sep 21, 2016 Stefan E. Funk Allgemeine Überarbeitung

3

Jan 17, 2017 Stefan E. Funk Weitere Kommentare eingearbeitet

Mar 7, 2017 Stefan E. Funk Abbildung 3 finalisiert: Flow eines DARIAH-DE Storage-Token

Mar 21, 2017 Martin Haase Update der PDP-Grafik und Beschreibung

May 12, 2017 Stefan E. Funk Zusammenführung der letzten Versionen, Kapitel zu
dynamischen Gruppen hinzugefügt

Jul 10, 2017 David Hübner Translation, various OAuth2 clarifications

Sep 29, 2017 Stefan E. Funk Added DiscussData and Annotator Use-Cases

Oct 13, 2017 0.25 Martin Haase Feedback on v2.4 and from several tickets

Feb 21, 2018 0.26 Martin Haase Described functionality of access token management in the
SelfService LUI (3.3.4 , 3.5).

Aug 23, 2018 0.28 Stefan E. Funk Edited to latest Datasheet Editor, Geo-Browser, and DARIAH-DE
Repository Issues. We do need them for:

(a) isPublic flag and API for setting OwnStorage resources
public, and

(b) Storage Token generation in DARIAH-DE SelfService to use
with DARIAH-DE Repository API.

Aug 23, 2018 0.29 Stefan E. Funk Removed Annotator and DiscussData use cases, we only need
basic DH-rep, PDP, or Shibboleth functionality here.

Dez 11, 2018 0.3 Stefan E. Funk Storage Token can be revealed in the Publikator, no need to
implement this in the SelfService, #setPublic issues commented,
ordering of future tasks and TODOs.

Jan 02, 2019 0.31 Martin Haase #listResources; many comments resolved and created; spelled
out TODOs (and sorted tickets)

Jan 07, 2019 0.32 Stefan E. Funk Resolved PDP/AS/Storage issues: We indeed must query the
storage resource for #setPublic and related things, not PDP,
storage must implement these for OwnStorage…

Feb 01, 2019 0.33 Stefan E. Funk Added the ownStorage flag, adapted methods and
documentation

Feb 01, 2019 0.34 Stefan E. Funk Adapted to new Storage API paper v2.0, added
Abbildungsverzeichnis

Feb 12, 2019 0.35 Martin Haase Some clarifications wrt. the API

4

Feb 25, 2019 0.50 Stefan E. Funk Adding DARIAH-DE Own- and PublicStorage API spec and their
usage of PDP methods.

March 1, 2019 0.51 Stefan E. Funk Completed OwnStorage and PublicStorage API documentation.

March 6, 2019 0.60 Stefan E. Funk Removed some refs to storage API paper version 1.0.

March 11, 2019 0.70 Stefan E. Funk Adopted #checkAccess on Own and PublicStorage.

April 9, 2019 0.82 Stefan E. Funk Added PDP.php PDP path.

April 11, 2019 0.84 Stefan E. Funk Added NOT FOUND responses for unknown PDP methods,

May 15, 2019 0.88 Stefan E. Funk Removed the PDP#checkAccess calls from Own and
PublicStorage#create.

August 26, 2019 1.0 Stefan E. Funk Finalized document.

5

Content
 1 Introduction...8

 1.1 Bibliography..8

 1.2 Abbreviations..9

 2 General OAuth2 Authorization Code Flow with SAML..10

 3 The DARIAH-AAI Flow...13

 3.1 Use Cases in DARIAH-DE..13

 3.1.1 Publikator – Browser Application with Java Backend..14

 3.1.2 Repository API Usage...16

 3.1.3 Geo-Browser and Datasheet Editor – HTML/JavaScript Application...........................16

 3.1.4 Dynamic groups..17

 3.2 Overview...17

 3.3 Usage of the OAuth2 Admin Interface...19

 3.3.1 Access restrictions..19

 3.3.2 Resource Servers and Client Applications...19

 3.3.3 Access Tokens..20

 3.3.4 REST interface..20

 3.3.4.1 Security..20

 3.3.4.2 Endpoints...21

 3.4 Structure of the RBAC..21

 3.5 SelfService functionality..22

 3.5.1 Creation of access tokens...22

 3.5.2 Users manage their own access tokens..22

 4 Specification of the API..24

 4.1 Client requests token..24

 4.1.1 Authorization Code Grant..24

 4.1.2 Implicit Grant...25

 4.1.3 Using the token...25

 4.2 Accessing resources...26

 4.3 Validation of the Access Token and Callout to the RBAC PDP...26

 4.3.1 General Access Format for the PDP's API..26

 4.3.2 Validation of the Access Token...26

 4.3.3 #checkAccess...27

 4.3.4 #registerResource...28

 4.3.5 #unregisterResource...29

6

 4.3.6 #publish...29

 4.3.7 #unpublish...30

 4.3.8 #list..30

 4.4 Response to the client..31

 4.5 Operations on the DARIAH-DE Storage Implementations..31

 4.5.1 OwnStorage Implementation...31

 4.5.1.1 #create...31

 4.5.1.2 #read...32

 4.5.1.3 #update..32

 4.5.1.4 #delete...32

 4.5.1.5 #publish...33

 4.5.1.6 #unpublish...33

 4.5.1.7 #list..33

 4.5.1.8 #info...34

 4.5.1.9 #checkAccess..34

 4.5.2 PublicStorage Implementation...34

 4.5.2.1 #create...34

 4.5.2.2 #read...35

 4.5.2.3 #update..35

 4.5.2.4 #delete...35

 4.5.2.5 #publish...35

 4.5.2.6 #unpublish...35

 4.5.2.7 #list..35

 4.5.2.8 #checkAccess..36

 4.5.2.9 #info...36

 4.6 Mapping HTTP operations and scopes...36

7

 1 Introduction
The Authentication- and Authorization-Infrastructure (AAI) of DARIAH is based on the
SAML protocol and implemented with open-source-solutions, such as OpenLDAP,
didmosLUI, Shibboleth Identity Provider and Shibboleth Service Provider and a DARIAH-
developed Java Service Provider.

The SAML Web Single Sign-On profile covers most of the requirements of today’s web
applications. However, a common use-case is a web application (front-end) accessing a
web service (back-end) securely in the name of the user, that is logged in at the front-end
application. Handing over the SAML assertion securely is rather difficult to realize1. Other
possibilities include Kerberos Constrained Delegation, which requires a very specific
infrastructure or dedicated service-accounts, that are easily compromised and do not scale
well.

If the web service is based on the SOAP protocol, authentication usually is done via the
SOAP header. An example for this is the SAML Security Token profile2. Recent
development indicates a shift from SOAP-based to REST-based solutions for back-end
web services. The IETF standard OAuth23 can be used to cover this use-case.

This document briefly describes a solution, where the “Authorization Code Flow” of
OAuth2 is combined with SAML-based authentication to provide secure access to a
REST-based back-end. This solution has been deployed successfully by DAASI
International in the past and could be re-used for DARIAH. Furthermore this document
details how such a flow could be integrated into an external Policy Decision Point (PDP) in
order to allow it to be used for the DARIAH Storage API.

 1.1 Bibliography

[DARIAH-Storage-
APIv1.0]

Stefan E. Funk, Peter Gietz, Martin Haase, Patrick Harms, Andreas
Aschenbrenner, Danah Tonne, Jedrzej Rybicki: DARIAH Storage API – A
Basic Storage Service API on Bit Preservation Level, Version: 1.0

[DARIAH-Storage-
APIv2.0]

Stefan E. Funk, Peter Gietz, Martin Haase, Patrick Harms, Andreas
Aschenbrenner, Danah Tonne, Jedrzej Rybicki: DARIAH Storage API – A
Basic Storage Service API on Bit Preservation Level, Version: 2.0

1 cf. https://spaces.internet2.edu/display/ShibuPortal/Home
2 http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf
3 http://tools.ietf.org/html/rfc6749

8

http://tools.ietf.org/html/rfc6749
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf
https://spaces.internet2.edu/display/ShibuPortal/Home

 1.2 Abbreviations

AAI Authentication and Authorization Infrastructure

API Application Program Interface

AS (OAuth2) Authorization Server

ePPN eduPersonPrincipalName

IdP Identity Provider

LDAP Lightweight Directory Access Protocol

PAOS SOAP, backwards

PDP Policy Decision Point

RBAC Role Based Access Control

RS Resource Server

SAML Security Assertion Markup Language

SID Session ID

SOAP Simple Object Access Protocol

SP Service Provider

SSO Single Sign On

URI Uniform Resource Identifier

URL Uniform Resource Locator

9

 2 General OAuth2 Authorization Code Flow with SAML
In Figure 1, the "Web Service Client or Portal” is the front-end application mentioned in the
introduction, while the “OAuth2 Resource Server (RS)” is the back-end web-service. The
“Web Service Client or Portal ” will be referred to as external SP. Please note, that this
component needs to act as both, a SAML SP towards the SAML IdP, that is used for
authentication and as OAuth2 client towards the AS and the RS.

Figure 1 shows the access of an external SP (a Web Service Client or Portal) to a REST-
based web-service (Resource Server, RS). Most importantly, the external SP eventually
gets granted access to information stored at the Resource Server in the name of the user,
that is logged in at the external SP. For this, an OAuth2 Access Token is used. This token
is only valid for this user and a limited time. Optionally, an additional Refresh Token might
be issued, that can be used by the external SP to request a new Access Token after the
previous one expired without the need for additional user interaction. Tokens can be
invalidated by both the AS and the external SP at any time. The detailed flow is as follows:

1. The user accesses the external SP. Authentication can be with the IdP or by some
other means. If it is with an IdP, then the arrows from the diagram denote:

• 2a: External SP issued Authentication Request and

10

Figure 1: OAuth2 Authorization Code Flow with SAML

SAML Service
Provider (SP)

OAuth2
Resource

Server (RS)

Browser Web Service Client
or Portal

OAuth2
Authorization
Server (AS)

/validate

/token

/authorize

SAML Identity
Provider (IdP)

1

7b

7a Code

5a SAML Ass.

2a

2b

3b

3a

4 AuthN

5b

6 AuthZ

12
Content

11 Optional Validation

9 Token
8 Code

13 Content

10 Access
w/ Token

• 3b: redirects the user to the external IdP.

• 4: Authentication at the external IdP

• 5a: External IdP issues assertion and

• 7b: redirects user back to the external SP.

2. As soon as the external SP wants to request data from the REST-based web-
service, it redirects the user to the Authorization endpoint (/authorize) of the OAuth2
Authorization Server (AS) to eventually get an Access Token (2a / 2b). This
endpoint is protected by a SAML SP, which will be referred to as AS-SP.. The
external SP transmits the following information as part of the HTTP GET
parameters:

1. Scope of the intended operation (read, write, …)

2. Its client ID

3. A redirect URI

4. An identifier for the status

During step 1 (above) the user already authenticated at the external IdP. This
session can be reused by the AS-SP (Single Sign-On). If, for whatever reason, no
session can be found, the user has to authenticate at the external IdP again. At the
very least, the AS-SP gets an user identifier from the external IdP, that can be used
to identify the user at the AS.

3. Authentication Request from the AS-SP to the external IdP (cf. Step 2)

4. The user authenticates towards the IdP. Note that this step will be invisible if the
user had authenticated in Step 1 already, due to Single Sign-On.

5. SAML assertion is being transmitted to the AS-SP

6. The AS asks the user to authorize the request, showing the user the scope and
name of the client of this request. Allowing the user to explicitly allow or deny
access to her/his data is one of the main characteristics of the OAuth2 protocol.

7. Assuming the user authorized the request, the AS redirects the user back to the
redirect URI (cf. Step 2) at the external SP. Part of the HTTP GET parameters is the
so called Authorization Code, which is a short-lived, one-time-use code, that can be
used by the external SP to request the Access Token at the AS.

8. Using the Authorization Code, the external SP requests the Access Token directly
at the AS via a back-channel request (usually REST-based). The /token-endpoint
used for this request is not protected by the AS-SP and must not be protected by a
firewall that would prevent access.

9. After validating the Authorization Code and request, the AS sends the Access
Token (and optionally a Refresh Token) to the external SP.

10.Using the Access Token, the external SP can now send a request to the Resource
Server. The Access Token is transferred in the HTTP header. Access to the RS
must be allowed for the external SP (e.g. Firewall).

11.The RS should validate the Access Token. This step usually requires interaction

11

with the AS. The Access Token allows identification of the user at the AS.
As an alternative, there are so-called Self-contained tokens. These signed tokens
allow the RS to directly validate an Access Token, which prevents latency-problems
and processing in the AS. Self-contained tokens are usually short-lived and
therefore must be renewed, using Refresh Tokens frequently.

12.The RS returns the requested resources.

13.After processing the information, the external SP can provide adequate feedback to
the user.

14. (not shown) After the Access Token expires, the external SP can request a new
Access Token at the /token-endpoint of the AS, using the Refresh Token. This
request is similar to step 8 and requires no user interaction.

15.The external SP gets a new Access Token (similar to step 9).

In figure 1, the AS, the AS-SP and the RS are individual components. However, these
three components might be combined. Some implementations offer any combination of
two of these components or all of them. The external IdP might also be part of such a
combination.

The following user interaction is required:

• Authentication at the external IdP (e.g. User/Password)

• Step 4 might require authentication of the user at the external IdP, if no SSO-
session can be used

• During step 6 the user has to authorize the request. This interaction only happens
during the first request

As soon as the external SP has a valid Access Token, steps 5-11 are no longer necessary
and can be omitted. Optionally, the AS also issues a Refresh Token for the external SP. In
this case, even after the Access Token expires, the external AS can request a new Access
Token without any user interaction (steps 14+15).

12

 3 The DARIAH-AAI Flow
While chapter 2 provided an overview of the general OAuth2 Authorization Code Flow,
chapter 3 will focus on the integration into the DARIAH infrastructure and the
implementation of the centralized Policy Decision Point (PDP), consisting of RBAC and
OAuth2 AS, using openRBAC, openContext APIs and the existing DARIAH LDAP server.

 3.1 Use Cases in DARIAH-DE

DARIAH-DE provides two storage instances: OwnStorage and PublicStorage.

OwnStorage provides storage for a single user only (#read / #write / #update / #publish /
#unpublish) and single resources can be set public by the resources' owner to be available
for everyone (#read). This can be reversed by using #unpublish anytime.

PublicStorage provides storage for resources that are publicly available and shall not be
deleted anymore. Users can write resources (once) and they are publicly available after
writing. No delete or update is provided.

Both storage instances are using the same PDP and AS REST interface, so OwnStorage
and PublicStorage resources both are registered in the same PDP.

13

 3.1.1 Publikator – Browser Application with Java Backend

The DARIAH-DE Publikator4 provides the workflow to publish research data in the
DARIAH-DE repository (cf. DARIAH-DE Repository5). Both, the DARIAH-DE OwnStorage
and the DARIAH-DE PublicStorage are accessed by different services at different levels of
the workflow. All of these calls should be on behalf of and with authorization of the user.
There will only be a single Access Token, that will be used to access both, the
OwnStorage and the PublicStorage service.

The user's access token can easily be revealed be pressing the “reveal storage token”
button, and then be used for storage or higher level service API calls.

The Publikator web application requests that token from the AS-component of the PDP
and later hands it over to the Publish-Service. This token will only be used by the individual
DARIAH-DE repository-services in a secured environment. Note, that the OAuth2 Access
Token is a Bearer Token6 and therefore can be used to access a resource by anyone who
is possession of such a token. It is therefore paramount to make sure, that such a token is
only shared with applications, that are privileged to access these resources. It is common
to only issue short-lived Access Tokens, in order to contain possible damage. In such a
scenario the client, that originally requested such a token, can use a Refresh Token to
request new Access Tokens without additional user interaction.

Unlike Access Tokens, these Refresh Tokens do have a specified audience (i.e. the
client). For the foreseeable future the DARIAH PDP will likely use long-lived Access
Tokens.

4 https://trep.de.dariah.eu/publikator
5 https://repository.de.dariah.eu/doc/services/submodules/publikator/docs/index

.html
6 https://tools.ietf.org/html/rfc6750

14

https://tools.ietf.org/html/rfc6750
https://repository.de.dariah.eu/doc/services/submodules/publikator/docs/index.html
https://repository.de.dariah.eu/doc/services/submodules/publikator/docs/index.html
https://trep.de.dariah.eu/publkikator

Figure 3 shows the workflow of the Publikator use-case:

• 1 + 2: The Publikator application requests an Access Token from the PDP:

◦ Token T1 for the DARIAH-DE storage (OwnStorage/PublicStorage), client:
Publikator, Scope: read/write

• 3 + 4: Publikator writes/updates/deletes the user’s data in the OwnStorage, using
Token T1 (public=false).

• 5 + 6: The storage-implementation (OwnStorage) requests a policy decision from
the PDP, checking if the user’s privileges are sufficient for the requested operation.
If yes, the write operation is performed.

• 7: Publikator calls DH-publish and hands over Token T1. All clients (Publikator, DH-
publish, DH-crud, Collection Registry) are trustworthy and in the same security
domain.

• 8: DH-publish reads from OwnStorage, using Token T1 (public=false)

• 9: DH-publish hands over Token T1 to DH-crud

• 10: DH-crud reads from OwnStorage, using Token T1 (public=false)

• 11: DH-crud writes to PublicStorage, using Token T1 (public=true)

15

• 12: The storage-implementation (PublicStorage) requests a policy decision from the
PDP, checking if the user’s privileges are sufficient for the requested operation. If
yes, the write operation is performed.

• 13: DH-publish creates collection-record for the user in the Collection Registry (CR)

◦ CR does not use any tokens, but gets the user’s ePPN directly from DH-publish
and uses it to connect the record to the user. DH-publish uses an interface with
HTTP basic auth to connect to the CR.

 3.1.2 Repository API Usage

• Get token T1 from Publikator for storage access (see development service at
https://trep.de.dariah.eu/publikator)

• Publish via API using (I) DH-import (koLibRI) or (II) direct DH-publish access as
described in the DH-publishAPI documentation (https://repository.de.dariah.eu/doc/
services/submodules/kolibri/kolibri-dhpublish-service/docs)

◦ DH-publish API takes (i) a storage token and (ii) a storage ID from the
OwnStorage, and first checks if the file can be read without error (such as
restricted access)

◦ If storage access is granted the user is allowed to publish. More testing is then
done in DH-publish modules (such as checking mandatory metadata and overall
file access).

 3.1.3 Geo-Browser and Datasheet Editor – HTML/JavaScript
Application

The Geo-Browser web-application (https://geobrowser.de.dariah.eu), including the
Datasheet Editor (https://geobrowser.de.dariah.eu/edit), allows to store and access data in
the DARIAH-DE storage. Currently everything is being stored in the DARIAH-DE
OpenStorage without any access control. The DARIAH-DE OpenStorage used by the
Datasheet Editor and the Geo-Browser is provided by the KIT at the moment, and will be
shut down end of February 2019.

In order to grant usage to the Datasheet Editor's and Geo-Browser's storage, we do need
to change this to (a) store all data in the DARIAH-DE OwnStorage (under the user’s name)
and (b) allow a user to flag his/her files to be readable by others. This should NOT result in
the data being copied to the DARIAH-DE PublicStorage, but rather by setting the PDP's
public flag via OwnStorage, indicating that the files should be readable by everyone. All
files in the OwnStorage can be edited or deleted by the user and the isPublic-flag can be
revoked at any time.

The workflow of the Geo-Browser use-cases follows:

• The Geo-Browser requests an OAuth2 storage token from the AS in order to access
the OwnStorage on the user’s behalf.

• The Geo-Browser reads/writes/updates files in the OwnStorage, using that token.

• The user is able to set/unset the public flag from within the Geo-Browser, or any

16

https://geobrowser.de.dariah.eu/edit
https://geobrowser.de.dariah.eu/
https://repository.de.dariah.eu/doc/services/submodules/kolibri/kolibri-dhpublish-service/docs/index.html
https://repository.de.dariah.eu/doc/services/submodules/kolibri/kolibri-dhpublish-service/docs/index.html
https://repository.de.dariah.eu/doc/
https://trep.de.dariah.eu/publikator

other app that uses the token, querying the storage implementation, OwnStorage in
this case (see #publish and #unpublish).

• The user must be able to chose from his files in the OwnStorage to set a certain
file's status to public=true and again to public=false. Therefore we do need a list of
published and/or unpublished files from the OwnStorage (see #listResources).

Resource-Management:

• In a later version, a GUI to manage all objects of a user at the RBAC is probably
needed (including file- and group-permissions, perhaps as part of an extension to
the Self-service portal)

• In a later version: lists of objects in the RBAC and an interface between generic
search and OwnStorage

 3.1.4 Dynamic groups

Dynamic groups should be implemented, that allow users to share (probably only read-
access at first) objects in their OwnStorage with other DARIAH users.

One possible use-case is a Geo-Browser user (let’s call him Franz) wanting to share one
of his files, stored in his OwnStorage, with other DARIAH users:

• Franz logs into the Datasheet Editor via Shibboleth

• Franz creates a new datasheet and uses the Geo-Browser to display it

• Franz creates a new group or chooses an existing group in the LDAP (perhaps via
the SelfService)

• Franz adds all DARIAH users to this group, he wants to share his datasheet with.
DARIAH users need to explicitly allow other users to find them with such a search
(similar to the TextGrid-searchable flag).

 3.2 Overview

Figure 4 gives an overview of the proposed architecture. The central PDP-component
(consisting of SP, RBAC and OAuth2 AS) is placed in the center.

17

Figure 4 shows the following steps (yellow boxes):

0. The user’s browser already established a valid session with an application (here:
Geo-Browser)

1. As soon as resources are requested, the user is redirected to the AS-SP, which
triggers a SAML Authentication Request at the IdP (as specified in the DARIAH-
AAI). Since the user already has a session at the IdP, a SAML-assertion is
redirected to the AS-SP (SSO). Now shown: attribute aggregation as specified in
the DARIAH-AAI.

2. The AS issues an OAuth2 token T intended to be used by the client (Geo-Browser)
to read/write at the StorageAPI and asks the user to authorize. This token is
transferred to the application via the OAuth2 Authorization Code Flow (cf. Steps 5-
11 in chapter 2).

3. cf. step 12 in chapter 2 (GeoBrowser accesses Resource Server, using T)

4. cf. step 13 in chapter 2. Token validation happens exactly as described in chapter
4.3.

5. Prior to every access to a resource, the StorageAPI calls the checkAccess endpoint
at the PDP, using token T.

6. Internally the openRBAC-server validates token T.

18

7. (not shown) The response from the PDP to the StorageAPI happens as specified in
chapter 4.4.

Note, that the access management to share/unshare files, is not shown in Figure 4,
because it is independent of the flow shown in Figure 4.

 3.3 Usage of the OAuth2 Admin Interface

The Admin interface of the OAuth2 AS component of the PDP is available at
https://pdp.de.dariah.eu/oauth2/client/client.html.

 3.3.1 Access restrictions

Any DARIAH user can log in, however, only administrative users can see or modify entities
created by other users. Adding an administrative user is currently done by adding a user
ID / an eduPersonPrincipalName to the configuration file /opt/apis-home/conf/
saml.attributes.properties on the PDP server, and restarting the Tomcat servlet container.
While this is a working solution, certainly a more dynamic method, e.g. using an LDAP
group, would be a desirable future solution.

Non-administrative users would normally not create Resource Servers and Client
Applications, but can be expected to have the desire to inspect or delete the tokens that
were issued (see 3.5.2).

 3.3.2 Resource Servers and Client Applications

The interface has two menu entries for adding OAuth2 Resources (RS) and Clients. There
is a 1:N relationship between RS and Clients, i.e. any Client is always attached to exactly
one RS.

Adding an RS will define the OAuth2 "scopes" and any descriptive metadata. An RS key
and secret will be created by the AS.

For adding a Client, first an RS needs to be selected, and a sub-set of the available RS
scopes that this Client would request. You can set here three checkboxes:

• Allow implicit grant: this is for Browser-based/JavaScript applications that omit the
background token retrieval step

• Allow client credentials grant: this is for service accounts that need no user
permission

• Use refresh tokens: as a security feature, it is recommended to use short-lived
access tokens. Using this feature allows the client to receive both an access token
and a refresh token. As in the authorization-code/token retrieval step, the client
would retrieve another access/refresh token pair after access token expiration,
using the refresh token.

The token expiration time is set here as well. A Client key and secret will be created by the
AS.

Please refer to the OAuth2 RFC https://tools.ietf.org/html/rfc6749 in order to get the correct
definitions of the terms used in this section and in the GUI.

19

https://tools.ietf.org/html/rfc6749
https://pdp.de.dariah.eu/oauth2/client/client.html

 3.3.3 Access Tokens

The "Access Tokens" menu entry is just for browsing the existing tokens; and the user can
delete them if needed. Admins can delete other user's tokens (see 3.3.4.2).

The functionality to delete one's own tokens is now available in the DARIAH SelfService
(cf. 3.5.2), which makes a priviledged callout (see 3.3.4.1) to the AS. Thus a DARIAH
user does not need to handle two interfaces.

 3.3.4 REST interface

The Admin Interface is actually a light-weight JavaScript Browser-based client that is
secured using OAuth2. All data is being retrieved from the back-end AS using an access
token. The capabilities of the REST API the AS offers are not documented but can be
deduced from the way the GUI offers its components, and by recording its requests using
a Web browser tracing tool, see 3.3.4.2 .

 3.3.4.1 Security

Since the administrative functions are supposed to be used interactively, it was decided to
secure them by Shibboleth SP in the current deployment. The user would access the
Shibboleth-protected /client endpoint first. Having the session established, the JavaScript-
based requests to the "/admin" endpoints (see below) will be accessible. The user thus
needs

• A session cookie issued by the SP

• An access token created for the administrative client during access of the AS

These functions can be used in an interactive manner. They are coupled with the SP's
rather short-lived session duration (which by default times out after 1 hour of web browser
inactivity).

For non-interactive requests by services such as the didmos LUI SelfService (see 3.5.2),
another endpoint "/luiadmin" was created. To access this endpoint, the service needs

• To send its request from a defined IP address configured on the Apache Web
Server

• Present Basic Authentication credentials (i.e. username / password) configured on
the Apache Web Server

• Present a long-lived administrative access token that has been issued beforehand
(e.g. interactively)

For the HTTP Basic Authentication by the Web Server and for the OAuth2 Authentication
by the AS, the headers "Authorization: Basic ..." and "Oauthorization: bearer ..." will be
used, respectively.

Both endpoints /admin and /luiadmin are proxied to the AS' Tomcat servlet container using
the AJP protocol. Once Basic Authentication has been checked, the Apache Web Server
is configured to rename the custom "Oauthorization" request header into the standard
"Authorization" request header expected by the AS.

20

 3.3.4.2 Endpoints

The basic endpoints used are:

• https://pdp(dev).de.dariah.eu/oauth2/admin/ (interactive mode)

• https://pdp(dev).de.dariah.eu/oauth2/luiadmin/ (service account
access)

The following RESTlike operations can be issued. Depending on the HTTP verb, the
action is different:

• GET: return a JSON structure containing the data

• DELETE: delete the specified resource(s)

• PUT: create a resource

• POST: modify the specified resource

In order to access concrete resources, the following RESTlike path specifications must be
added to the basic endpoints specified above.

• accessToken – return/delete all present tokens, including expired ones

• accesToken/851 – return/delete access token with AS-internal ID "851"

• accessTokenForOwner/StefanFunk@dariah.eu – return/delete all tokens of user
with resourceOwnerId "StefanFunk@dariah.eu" (this function constitutes an add-
on contributed by DAASI to the AS core code)

• resourceServer – return all OAuth2 resource servers defined in the AS

• resourceServer/101 – return resource server with internal ID "101"

• resourceServer/101/client – return OAuth2 clients connected to this resource server

• resourceServer/101/client/251 – return client with internal ID "251" connected to this
resource server

• resourceServer/stats – return statistics of all resource servers

 3.4 Structure of the RBAC

The data structure of the LDAP server needs to by slightly modified to store sessions of
the openRBAC server. Unlike previous versions of this document, the proposed
modification focuses on the highest possible compatibility with the current production-level
LDAP server. Significant changes include:

• No additional levels below ou=people. A high number of existing applications
operate of this level. Search requests for users should use baseDn:
dc=dariah,dc=eu and must use the search filter (&(objectClass=dariahPerson)(!
(dariahDeleted=TRUE)).

• No additional levels below ou=groups. Once again, several existing applications
rely on this structure. To include support for dynamic groups (cf. chapter 3.1.3) an
additional level will be implemented in ou=dynamic-groups,ou=groups,
dc=dariah,dc=eu. The RBAC uses the cn of an object in the LDAP directory to

21

detect role definitions. Our proposal is the use a _dynamicgroup_ prefix for dynamic
groups (e.g. cn=_dynamicgroup_<UUID>). To allow filtering such groups the
attribute dariahIsDynamic=TRUE could be added to the dariahGroup objectClass.

dc=dariah,dc=eu
├ ─ ─ ou=deleted-people
│ └ ─ ─ uid=def
│ └ ─ ─ dariahDeleted=TRUE
├ ─ ─ ou=dsa
│ └ ─ ─ uid=jira
│ └ ─ ─ (!(objectClass=dariahPerson))
├ ─ ─ ou=federation-people
│ └ ─ ─ uid=xyz
├ ─ ─ ou=groups
│ ├ ─ ─ cn=group1
│ │ └ ─ ─ member=uid=abc
│ └ ─ ─ ou=dynamic-groups
│ ├ ─ ─ cn=_dynamicgroup_UUID2
│ ├ ─ ─ cn=_dynamicgroup_UUID3
│ │ ├ ─ ─ member=uid=abc
│ │ └ ─ ─ member=uid=xyz
│ └ ─ ─ cn=_dynamicgroup_UUID4
├ ─ ─ ou=people
│ └ ─ ─ uid=abc
├ ─ ─ ou=requests
├ ─ ─ ou=resources
│ └ ─ ─ cn=resource1
│ ├ ─ ─ owner=abc@def.de
│ ├ ─ ─ ispublic=FALSE
│ ├ ─ ─ permissions=cn=_dynamicgroup_UUID3:read
│ └ ─ ─ permissions=cn=group1:write
└ ─ ─ ou=sessions
 ├ ─ ─ cn=session1
 │ └ ─ ─ sessionuser=uid=xyz
 └ ─ ─ cn=session2

 3.5 SelfService functionality

 3.5.1 Creation of access tokens

To create an access token the users can use the DARIAH-DE Publikator. After logging in
via DARIAH-AAI, the storage token the Publikator got from the PDP can be revealed
easily.

 3.5.2 Users manage their own access tokens

In order to have a consistent user experience, management of the access tokens a user
was issued will be implemented in the DARIAH SelfService didmos LUI-based portal. A
dedicated menu entry will be added to the existing SelfService menu. For each access
token, the user sees the following information:

• Date issued

• Expiry date7

7 https://github.com/OAuth-Apis/apis/issues/33#issuecomment-450837319

22

https://github.com/OAuth-Apis/apis/issues/33#issuecomment-450837319

• Application Name (OAuth2 client) the token was issued to

• Scopes (e.g "read", "write") the user has accepted

This structure is mainly informat∫ive. The only action the user can issue is to delete
individual tokens.

The SelfService will access the ∫REST API of the AS directly, see 3.3.4 . Users can see
and delete only their own tokens∫. Administrators would use the AS's own GUI described
under 3.3 (or 3.3.3 specifically) in order to inspect or delete other users' access tokens.

23

 4 Specification of the API
Accessing the StorageAPI [DARIAH-Storage-APIv1.0] via the SAML ECP profile has
several disadvantages:

• Delegation (i.e. passing along the SAML “Token”) is not practical

• There are very few IdP in today’s federations that support the SAML ECP profile

• The ECP profile is not wide-spread. Most use-cases are covered by the much more
accepted alternative OAuth2

• OAuth2 clients are simpler to implement than clients using the rather complicated
ECP profile

Therefore the OAuth2 protocol seems to be a much better fit for the requirements of the
DARIAH Storage API, also see[DARIAH-Storage-APIv2.0].

The following chapters are based on the RFC specification for OAuth28.

For every API call the header X-Transaction-ID can be set containing a logID string. If
given, it must be included in the PDP's logging.

 4.1 Client requests token

Requesting a token happens according to the OAuth2 specification. The relevant grant
types are Authorization Code Grant (for server-side applications) and Implicit Grant (for
JavaScript applications running in a browser). This token can be used to access the
Resource Server via DARIAH Storage API.

 4.1.1 Authorization Code Grant

Cf. Figure 1 and chapter 4.1 of the OAuth2 RFC. The client needs to do the following
(here: Test-Client at the Test-AS):

• Before any authentication: registration with client_id, redirect_uri and intended
scopes. AS issues a client_secret.

• During every authentication:

◦ Redirect to

https://pdpdev.de.dariah.eu/oauth2/oauth2/authorize?
response_type=code&client_id=pdp-test-
client&redirect_uri=https://pdpdev.de.dariah.eu/pdptest/client/S
tDclient.php&scope=read&state=4675

◦ This endpoint is protected by the AS-SP, meaning the user is redirected to a IdP
(if no session exists already). Afterwards the AS has access to the user’s ePPN
and replies with

https://pdpdev.de.dariah.eu/pdptest/client/StDclient.php?
code=379ec0f7-4830-483e-b7e8-776664cb4dd0&state=4675

◦ The client uses this Authorization Code in a REST call and exchanges it for an

8 http://tools.ietf.org/html/rfc6749

24

https://pdpdev.de.dariah.eu/pdptest/client/StDclient.php?code=379ec0f7-4830-483e-b7e8-776664cb4dd0&state=4675
https://pdpdev.de.dariah.eu/pdptest/client/StDclient.php?code=379ec0f7-4830-483e-b7e8-776664cb4dd0&state=4675
https://pdpdev.de.dariah.eu/pdptest/client/StDclient.php?code=379ec0f7-4830-483e-b7e8-776664cb4dd0&state=4675
https://pdpdev.de.dariah.eu/oauth2/oauth2/authorize?response_type=code&client_id=pdp-test-client&redirect_uri=https://pdpdev.de.dariah.eu/pdptest/client/StDclient.php&scope=read&state=4675
https://pdpdev.de.dariah.eu/oauth2/oauth2/authorize?response_type=code&client_id=pdp-test-client&redirect_uri=https://pdpdev.de.dariah.eu/pdptest/client/StDclient.php&scope=read&state=4675
https://pdpdev.de.dariah.eu/oauth2/oauth2/authorize?response_type=code&client_id=pdp-test-client&redirect_uri=https://pdpdev.de.dariah.eu/pdptest/client/StDclient.php&scope=read&state=4675
http://tools.ietf.org/html/rfc6749

Access Token. This request happens directly at the AS, not as a redirect via the
browser:

POST https://pdpdev.de.dariah.eu/oauth2/oauth2/token

Authorization: Basic <Base64(<client_id>:<client_secret>)>

Content-Type: application/x-www-form-urlencoded

(here the POST body:)

grant_type=authorization_code&redirect_uri=https://pdpdev.de.dar
iah.eu/pdptest/client/StDclient.php&code=79ec0f7-4830-483e-b7e8-
776664cb4dd0

◦ The client receives the Access Token from the AS

{"scope":"read","access_token":"47de4b99-408c-42bf-952c-
a9f682b55663","token_type":"bearer","expires_in":63072000}

 4.1.2 Implicit Grant

In contrast to Figure 1 the Access Token is directly returned to the JavaScript-client (cf.
Chapter 4.2 in the OAuth2 RFC). The client needs to do the following:

• Before: registration with client_id, redirect_uni and intended scopes (no
client_secret) at the AS. Implicit grant must be checked!

• During every authentication:

◦ Redirect to
https://pdpdev.de.dariah.eu/oauth2/oauth2/authorize?
response_type=token&client_id=authorization-server-admin-js-
client&scope=read,write&redirect_uri=https://pdpdev.de.dariah.eu
/oauth2/client/client.html

◦ This endpoint is protected by the AS-SP, meaning the user is redirected to a IdP
(if no session exists already). Afterwards the AS has access to the user’s ePPN
and redirects back to
https://pdpdev.de.dariah.eu/oauth2/client/client.html#access_tok
en=33f948d8-9285-4f1f-9e9e-
9ce2b7c6799c&token_type=bearer&expires_in=0&scope=read,write&pri
ncipal=MartinHaase@dariah.eu

◦ The access token is already included here.

 4.1.3 Using the token

Now the client can perform REST calls on the Resource Server (here: at the Test-RS):

GET
https://pdpdev.de.dariah.eu/pdptest/resource/StDResourceServer.php/
data/MartinHaase@dariah.eu/read

Accept application/json

Authorization bearer 33f948d8-9285-4f1f-9e9e-9ce2b7c6799c

The Resource Server (PDP) should answer accordingly.

25

https://pdpdev.de.dariah.eu/pdptest/resource/StDResourceServer.php/data/MartinHaase@dariah.eu/read
https://pdpdev.de.dariah.eu/pdptest/resource/StDResourceServer.php/data/MartinHaase@dariah.eu/read
https://pdpdev.de.dariah.eu/oauth2/client/client.html#access_token=33f948d8-9285-4f1f-9e9e-9ce2b7c6799c&token_type=bearer&expires_in=0&scope=read,write&principal=MartinHaase@dariah.eu
https://pdpdev.de.dariah.eu/oauth2/client/client.html#access_token=33f948d8-9285-4f1f-9e9e-9ce2b7c6799c&token_type=bearer&expires_in=0&scope=read,write&principal=MartinHaase@dariah.eu
https://pdpdev.de.dariah.eu/oauth2/client/client.html#access_token=33f948d8-9285-4f1f-9e9e-9ce2b7c6799c&token_type=bearer&expires_in=0&scope=read,write&principal=MartinHaase@dariah.eu
https://pdpdev.de.dariah.eu/oauth2/oauth2/authorize?response_type=token&client_id=authorization-server-admin-js-client&scope=read,write&redirect_uri=https://pdpdev.de.dariah.eu/oauth2/client/client.html
https://pdpdev.de.dariah.eu/oauth2/oauth2/authorize?response_type=token&client_id=authorization-server-admin-js-client&scope=read,write&redirect_uri=https://pdpdev.de.dariah.eu/oauth2/client/client.html
https://pdpdev.de.dariah.eu/oauth2/oauth2/authorize?response_type=token&client_id=authorization-server-admin-js-client&scope=read,write&redirect_uri=https://pdpdev.de.dariah.eu/oauth2/client/client.html
https://pdpdev.de.dariah.eu/pdptest/client/StDclient.php&code=79ec0f7-4830-483e-b7e8-776664cb4dd0
https://pdpdev.de.dariah.eu/pdptest/client/StDclient.php&code=79ec0f7-4830-483e-b7e8-776664cb4dd0
https://pdpdev.de.dariah.eu/pdptest/client/StDclient.php&code=79ec0f7-4830-483e-b7e8-776664cb4dd0
https://pdpdev.de.dariah.eu/oauth2/oauth2/token

 4.2 Accessing resources

Creating, querying, modifying and deleting resources still works with the HTTP methods
POST, GET, … as specified in [DARIAH-Storage-APIv1.0]. Also the responses of the
Storage API does not change. Only the AAI has changed from PAOS / ECP to OAuth2
tokens to be included in the header, see [DARIAH-Storage-APIv2.0]:

• Authorization: bearer <OauthAccessToken>

 4.3 Validation of the Access Token and Callout to the RBAC PDP

In OAuth2, a Resource Server (here: the Storage API implementation) performs
authorization itself. Since the API implementations are distributed and access rules should
be maintained centrally, every API implementation must query a central Policy Decision
Point (PDP) for such an access decision. In the TextGrid project this was done via SOAP
requests at TG-auth*, which used an open source PDP based on openRBAC. This
approach should be reused here with some modifications for the DARIAH infrastructure
and using the OAuth2 protocol.

A tgCheckAccess request, used in TextGrid, contained a triple of (sessionID, resource,
operation). The sessionID parameter will be replaced by the OAuth2 Access Token in this
specification.

 4.3.1 General Access Format for the PDP's API

A request at the RBAC can be described as follows:

<HTTP-VERB> https://<host>/dhauth/rbacRest/PDP.php/<resource>/...

Authorization: Basic <Base64 encoded api_key:api_secret>

Accept: application/json

X-Requested-For: <access_token>

After receiving such a request, the RBAC needs to quer∫y the AS internally to validate the
Access Token…

For unknown request pathes the PDP is responding with 404 Not Found and the
JSON string in the response body: {"message":"Not found"}.

 4.3.2 Validation of the Access Token

…and receives the user’s ePPN (principal:attributes:name). For this a HTTP request
is used as follows:

GET https://<host>/oauth2/v1/tokeninfo?access_token=<access_token>

Authorization: Basic <Base64 encoded api_key:api_secret>

Accept: application/json

The AS returns a JSON object, containing the ePPN of the user:

{

 "expires_in": 1464251020060,

 "principal": {

26

 "attributes": {

 "IDENTITY_PROVIDER": "TODO",

 "DISPLAY_NAME": "Martin Haase"

 },

 "adminPrincipal": false,

 "groups": [],

 "roles": [],

 "name": "MartinHaase@dariah.eu" <<<< ePPN

 },

 "scopes": [

 "read", "write"

],

 "audience": "dariah-de-publikator" <<<< ID of the OAuth2 client

}

 4.3.3 #checkAccess

Request

GET
https://<host>/dhauth/rbacRest/PDP.php/<resource>/checkAccess/<oper
ation>

Authorization: Basic <Base64 encoded api_key:api_secret>

Accept: application/json

X-Requested-For: <access_token>

X-Transaction-ID: <log_id>

The StorageAPI is registered at the AS/PDP with two strings, api_key and api_secret,
which are used for authorization at the AS when performing requests. Additional
parameters are included in a GET request:

• <access_token>

• <resource> contains an ID for the resource

• <operation> (more specifically: the privilege to perform an operation on the
resource) as described in chapter 4.6 (e.g. read, write)

The X-Requested-For Header is optional if the operation equals "read" and the resource
has the Flag TGisPublic=TRUE.

Response

A HTTP 200/40x/50x status code with a JSON string in the response body:

Success:

• HTTP 200

Access denied:

• HTTP 40x with JSON Response data

27

{"error":"error","error_description":"human_readable error
description"}

Error:

• HTTP 50x depending on the exact error, this might also include a JSON error as in
40x

• Our proposal is to adapt the error codes from http://tools.ietf.org/html/rfc6749
#section- 4.1.2.1 (e.g. "invalid_grant", "access_denied", etc.)

Function:

What should happen during the checkAccess call?

• TGisPublic=TRUE and read: PERMIT

• TGisPublic=TRUE and OwnStorage=FALSE and write: DENY

• TGisPublic=TRUE and OwnStorage=FALSE and delete: DENY

• TGisPublic=TRUE and OwnStorage=TRUE and Owner matches, regardless of
operation: PERMIT

• TGisPublic=FALSE and Owner matches, regardless of operation: PERMITIf no
decision is possible using these rules, the group memberships (not roles) in
rbacPermissions are checked

For every access decision the RBAC uses the intersection of scopes in the token and
allowed operations according to roles. If the requested operation in within this intersection
PERMIT, otherwise DENY.

 4.3.4 #registerResource

Request

POST https://<host>/rbacRest/PDP.php/<ressource>

Authorization: Basic <Base64 encoded api_key:api_secret>

Accept: application/json

Content-Type: application/x-www-form-urlencoded

X-Requested-For: <access_token>

X-Transaction-ID: <log_id>

(hereafter the POST body:)

ownStorage=true

public=false

For an OwnStorage implementation ownStorage=true must be set in the POST body,
for a PublicStorage implementation ownStorage=false must be set.

Response

• See #checkAccess

Function

What should happen during registerResource?

28

https://dhauth/rbacRest/PDP.php/
http://tools.ietf.org/html/rfc6749#section-4.1.2.1
http://tools.ietf.org/html/rfc6749#section-4.1.2.1
http://tools.ietf.org/html/rfc6749#section-4.1.2.1
http://tools.ietf.org/html/rfc6749

◦ Set the owner in the resource (ePPN)

◦ For public=true set TGisPublic to TRUE, FALSE otherwise.

◦ Set the possible rbacOperations:

▪ read

▪ write

▪ deleted

▪ publish

◦ Set dariahIsOwnStorage to the value of ownStorage, if missing, the default is
TRUE

◦ Currently no specific group permissions are set

 4.3.5 #unregisterResource

Request

DELETE https://<host>/dhauth/rbacRest/PDP.php/<resource>

Authorization: Basic <Base64 encoded api_key:api_secret>

Accept: application/json

X-Requested-For: <access_token>

X-Transaction-ID: <log_id>

Response

• See #checkAccess

 4.3.6 #publish

This API method of the PDP must be called, similar to the other PDP methods, by the
resource server, i.e. the storage implementation.

Request

POST https://<host>/ dhauth/ rbacRest/PDP.php/<resource>/publish

Authorization: Basic <Base64 encoded api_key:api_secret>

Accept: application/json

X-Requested-For: <access_token>

X-Transaction-ID: <log_id>

Response

• See #checkAccess

Function

• Sets the TGisPublic flag for this resource to TRUE

29

https://dhauth/rbacRest/PDP.php/
https://dhauth/rbacRest/PDP.php/
https://dhauth/rbacRest/PDP.php/
https://dhauth/rbacRest/PDP.php/

 4.3.7 #unpublish

Request

POST https://<host>/dhauth/rbacRest/PDP.php/<resource>/unpublish

Authorization: Basic <Base64 encoded api_key:api_secret>

Accept: application/json

X-Requested-For: <access_token>

X-Transaction-ID: <log_id>

Response

• See #checkAccess

Function

• Sets the TGisPublic flag for this resource to FALSE

 4.3.8 #list

Request

GET https://<host>/dhauth/rbacRest/PDP.php/resources/list?

public=true&ownStorage=true

Authorization: Basic <Base64 encoded api_key:api_secret>

Acceppt: application/json

X-Requested-For: <access_token>

X-Transaction-ID: <log_id>

Response

• JSON Structure with ResourceIDs containing all the resources which are owned by
the token holder:

[

 { “id”: “EAEA0-4BC3-2E22-246D-0”,

 “ownStorage” : true,

 “public”: true },

 { “id”: “EAEA0-4BC3-2E22-246E-0”,

 “ownStorage” : true,

 “public”: false },

 ...

]

• Error responses: see 4.3.3 (#checkAccess)

Function:

• If public=true is appended to the URL, the list will contain only public
resources.

• If public=false is appended, the list will contain only unpublished resources

30

(registered with public=false).

• If public is not given, published and unpublished resources of this user are
returned.

• If ownStorage=true is appended, the list will contain only OwnStorage
resources (registered with ownStorage=true).

• If ownStorage=false is appended, the list will contain PublicStorage resources
(registered with ownStorage=false).

• If ownStorage is not given, Own- and PublicStorage resources of this user are
returned.

• Further appenders may be implemented in the future, such as group=groupABC,
or other keywords, e.g. for administrative usage.

 4.4 Response to the client

After a StorageAPI implementation performed a request at the PDP, generally the same
responses are returned to the client as specified in the StorageAPI specification (version
2.0).

 4.5 Operations on the DARIAH-DE Storage Implementations

It is possible to access the Storage service using an Access Token. This happens via the
DARIAH Storage API (version 2).

The storage implementations must have unique IDs over both Storage implementation
types. No two resources (OwnStorage and PublicStorage) may have the same ID!

 4.5.1 OwnStorage Implementation

• URL: https://cdstar.de.dariah.eu/dariah/

• The PDP API ownStorage parameter must be set to true

 4.5.1.1 #create

• OwnStorage performs a PDP#registerResource

Request

POST https://cdstar.de.dariah.eu/dariah/

Authorization: bearer <access_token>

X-Transaction-ID: <log_id>

Content-Type: <content_type>

Response

201 Created

Location: https://cdstar.de.dariah.eu/dariah/<object_id>

Content-Type: <content_type>

31

Errors

401 Unauthorized

 4.5.1.2 #read

• OwnStorage performs a PDP#checkAccess/read

Request

GET https://cdstar.de.dariah.eu/dariah/<object_id>

Authorization: bearer <access_token>

X-Transaction-ID: <log_id>

Response

200 OK

Content-Type: <content_type>

(object data in HTTP body)

Errors

401 Unauthorized

404 Not Found

 4.5.1.3 #update

• OwnStorage performs PDP#checkAccess/write

Request

PUT https://cdstar.de.dariah.eu/dariah/<object_id>

Authorization: bearer <access_token>

X-Transaction-ID: <log_id>

Response

201 Created

Error

401 Unauthorized

404 Not Found

 4.5.1.4 #delete

• OwnStorage performs a PDP#checkAccess/delete and PDP#unregisterResource

Request

DELETE https://cdstar.de.dariah.eu/dariah/<object_id>

Authorization: bearer <access_token>

X-Transaction-ID: <log_id>

Response

204 No Content

32

Error

403 Forbidden

404 Not Found

 4.5.1.5 #publish

• OwnStorage performs a PDP#publish

Request

POST https://cdstar.de.dariah.eu/dariah/<object_id>/publish

Authorization: bearer <access_token>

X-Transaction-ID: <log_id>

Response

204 No Content

Error

401 Unauthorized

404 Not Found

 4.5.1.6 #unpublish

• OwnStorage performs a PDP#unpublish

Request
POST https://cdstar.de.dariah.eu/dariah/<object_id>/unpublish

Authorization: bearer <access_token>

X-Transaction-ID: <log_id>

Response

204 No Content

Error

401 Unauthorized

404 Not Found

 4.5.1.7 #list

• OwnStorage performs a PDP#checkAccess/read and PDP#list

• The public parameter must be forwarded to the PDP as is comes with the #list
request. If the parameter is not set in the OwnStorage#list request, if must not be
set in the PDP#list request.

Request

GET https://cdstar.de.dariah.eu/dariah/list?public=true/false

Authorization: bearer <access_token>

X-Transaction-ID: <log_id>

Response

33

See chapter 4.3.8: #list

Error

401 Unauthorized

 4.5.1.8 #info

• OwnStorage performs an OAUTH#tokeninfo

Request

GET https://cdstar.de.dariah.eu/dariah/auth/info

Authorization: bearer <access_token>

X-Transaction-ID: <log_id>

Response

See chapter 4.3.2: Validation of the Access Token

 4.5.1.9 #checkAccess

• OwnStorage performs a PDP#checkAccess/<operation> on <object_id>

Request

POST https://cdstar.de.dariah.eu/dariah/<object_id>/checkAccess/
<operation>

Authorization: bearer <access_token>

X-Transaction-ID: <log_id>

Response

204 No Content

Error

401 Unauthorized

 4.5.2 PublicStorage Implementation

• URL: https://cdstar.de.dariah.eu/public/

• The PDP API ownStorage parameter must be set to false

 4.5.2.1 #create

• PublicStorage performs a PDP#registerResource

Request

POST https://cdstar.de.dariah.eu/public/

Authorization: bearer <access_token>

X-Transaction-ID: <log_id>

Content-Type: <content_type>

Response

34

201 Created

Location: https://cdstar.de.dariah.eu/public /<object_id>

Content-Type: <content_type>

Error

401 Unauthorized

 4.5.2.2 #read

• PublicStorage does NOT need to perform a PDP#checkAccess

Request

GET https://cdstar.de.dariah.eu/public /<object_id>

Authorization: bearer <access_token>

X-Transaction-ID: <log_id>

Response

200 OK

Content-Type: <content_type>

(object data in HTTP body)

Error

401 Unauthorized

404 Not Found

 4.5.2.3 #update

• Not implemented

 4.5.2.4 #delete

• Not implemented

 4.5.2.5 #publish

• Not implemented

 4.5.2.6 #unpublish

• Not implemented

 4.5.2.7 #list

• PublicStorage performs a PDP#checkAccess/read and a PDP#list

• The public parameter must be forwarded to the PDP as is comes with the #list
request. If the parameter is not set in the PublicStorage#list request, if must not be
set in the PDP#list request.

Request

35

https://cdstar.de.dariah.eu/dariah/
https://cdstar.de.dariah.eu/dariah/
https://cdstar.de.dariah.eu/dariah/
https://cdstar.de.dariah.eu/dariah/

GET https://cdstar.de.dariah.eu/public/list

Authorization: bearer <access_token>

X-Transaction-ID: <log_id>

Response

See chapter 4.3.8: #list

Error

401 Unauthorized

 4.5.2.8 #checkAccess

• PublicStorage performs a PDP#checkAccess/<operation> on <object_id>

Request

GET https://cdstar.de.dariah.eu/public/<object_id>/checkAccess/

<operation>

Authorization: bearer <access_token>

X-Transaction-ID: <log_id>

Response

200 OK

Error

401 Unauthorized

404 Not Found

 4.5.2.9 #info

• OwnStorage performs an OAUTH#tokeninfo

Request

GET https://cdstar.de.dariah.eu/public/auth/info

Authorization: bearer <access_token>

X-Transaction-ID: <log_id>

Response

• See chapter 4.3.2: Validation of the Access Token

 4.6 Mapping HTTP operations and scopes

We propose the following mapping between operations in [DARIAH-Storage-API-
v1.0_final.pdf], chapter 4 and operations (access rights) in checkAccess at the RBAC:

HTTP Verb Meaning in Storage API Operation in RBAC/Scope

GET Retrieve Resource read

POST Create Resource write

36

HEAD Retrieve Resource Headers read

PUT Update Resource write

DELETE Delete Resource delete

OPTIONS Retrieve Server Options n/a

This mapping table needs to be configured and documented in the individual StorageAPI
implementations (OwnStorage and PublicStorage). Access must only be allowed if the
PDP call (checkAccess, registerResource, …) was successful.

37

Figures
Figure 1: OAuth2 Authorization Code Flow with SAML..............10
Figure 2: The DARIAH-DE Repository Architecture.................13
Figure 3: Flow of the DARIAH-DE Storage Token...................15
Figure 4: The Policy Decision Point (PDP), consisting of an
openRBAC-server and OAuth2 AS, positioned in the DARIAH-AAI.....18

38

	1 Introduction
	1.1 Bibliography
	1.2 Abbreviations

	2 General OAuth2 Authorization Code Flow with SAML
	3 The DARIAH-AAI Flow
	3.1 Use Cases in DARIAH-DE
	3.1.1 Publikator – Browser Application with Java Backend
	3.1.2 Repository API Usage
	3.1.3 Geo-Browser and Datasheet Editor – HTML/JavaScript Application
	3.1.4 Dynamic groups

	3.2 Overview
	3.3 Usage of the OAuth2 Admin Interface
	3.3.1 Access restrictions
	3.3.2 Resource Servers and Client Applications
	3.3.3 Access Tokens
	3.3.4 REST interface
	3.3.4.1 Security
	3.3.4.2 Endpoints

	3.4 Structure of the RBAC
	3.5 SelfService functionality
	3.5.1 Creation of access tokens
	3.5.2 Users manage their own access tokens

	4 Specification of the API
	4.1 Client requests token
	4.1.1 Authorization Code Grant
	4.1.2 Implicit Grant
	4.1.3 Using the token

	4.2 Accessing resources
	4.3 Validation of the Access Token and Callout to the RBAC PDP
	4.3.1 General Access Format for the PDP's API
	4.3.2 Validation of the Access Token
	4.3.3 #checkAccess
	4.3.4 #registerResource
	4.3.5 #unregisterResource
	4.3.6 #publish
	4.3.7 #unpublish
	4.3.8 #list

	4.4 Response to the client
	4.5 Operations on the DARIAH-DE Storage Implementations
	4.5.1 OwnStorage Implementation
	4.5.1.1 #create
	4.5.1.2 #read
	4.5.1.3 #update
	4.5.1.4 #delete
	4.5.1.5 #publish
	4.5.1.6 #unpublish
	4.5.1.7 #list
	4.5.1.8 #info
	4.5.1.9 #checkAccess

	4.5.2 PublicStorage Implementation
	4.5.2.1 #create
	4.5.2.2 #read
	4.5.2.3 #update
	4.5.2.4 #delete
	4.5.2.5 #publish
	4.5.2.6 #unpublish
	4.5.2.7 #list
	4.5.2.8 #checkAccess
	4.5.2.9 #info

	4.6 Mapping HTTP operations and scopes

