
DARIAH Storage API – A Basic Storage Service
API on Bit Preservation Level

DARIAH-DE
Aufbau von Forschungsinfrastrukturen

für die e-Humanities

Authors:

Stefan E. Funk, Peter Gietz, Martin Haase (DAASI International)

Stefan E. Funk, Patrick Harms, Andreas Aschenbrenner (SUB Göttingen)

Jedrzej Rybicki (FZ Jülich)

Version: 2.2

File: DARIAH-Storage-API-v2.2

Created: 2011-10-14

Last Changes: 2021-09-21 (13:43:12)

Version 2.0 2021-09-21

Date Version Editor Comment

2011-09-11 0.0.5 Stefan E. Funk First version.

2011-09-12 0.0.6 Stefan E. Funk Added more comments and new architectural
image (still to discuss).

2011-09-19 0.1 Stefan E. Funk Added chapter Use Cases, provided by Andi and
Patrick.

2011-10-04 0.2 Stefan E. Funk Translated from German (partly), added first plain
HTTP API.

2011-10-07 0.3 Stefan E. Funk Added HTTP CRUD operation descriptions.

2011-10-10 0.3.1 Stefan E. Funk Added some comments.

2011-10-14 0.4 Stefan E. Funk Added OPTIONS method, described storage
concept.

2011-10-14 0.5 Peter Gietz Added AAI-Concept.

2011-10-15 0.6 Stefan E. Funk Formatting.

2011-10-21 0.7 Martin Haase, Peter
Gietz

Added diagram and description of ECP, made
some minor amendments in reaction to some
comments.

2011-11-09 0.8 Stefan E. Funk Adapted to recent e-mails, split up into AAI and
Storage API documents.

2011-11-14 0.9 Jedrzej Rybicki Accounted for on-going discussion, split operations
into request/response. Added links to HTTP 1.1.
Weak consistency definition added.

2011-11-17 0.9.1 Stefan E. Funk Finalized for AP1.

2011-11-17 0.9.2 Stefan E. Funk Removed left-over comments for AP1 release.

2011-12-09 0.9.3 Stefan E. Funk Merged comments from Natasa.

2011-12-14 0.9.4 Stefan E. Funk Commented comments from Patrick, updated
Storage Service picture.

2011-12-15 0.9.5 Stefan E. Funk Moved use-cases to appendix, accepted all the
changes.

2011-12-16 0.9.6 Stefan E. Funk Checked and added some HTTP technical things.

2011-12-19 0.9.6 Stefan E. Funk Added PAOS header and examples as described
in [DARIAH AAI].

2012-01-09 0.9.7 Stefan E. Funk Added optional parameter PID to CREATE
operations.

2012-02-09 1.0 Stefan E. Funk Added last HTTP headers. Version set to 1.0.

2019-02-01 1.9 Stefan E. Funk Adapting to PDP paper. Removing ECP AAI
issues.

2019-08-27 2.0 Stefan E. Funk Finalizing Version 2.0

2020-10-30 2.1 Stefan E. Funk Correct HTTP Header for Authentication

2021-01-29 2.2 Stefan E. Funk Add missing HTTP response for #GET: 204 No
Content

2021-09-21 2.2 Stefan E. Funk Correct version on title page

2/18

Version 2.0 2021-09-21

Table Of Contents
 1 Requirements of the Basic Storage Service API..4

 2 Functionalities not covered by the Basic Storage Service..4

 3 Basic Storage Service Architecture..4

 4 DARIAH RESTful Storage API...6

 4.1 AAI Integration..6

 4.2 HTTP POST..6

 4.3 HTTP GET..7

 4.4 HTTP HEAD...9

 4.5 HTTP PUT..10

 4.6 HTTP DELETE...12

 4.7 HTTP OPTIONS...13

 5 Optimistic Locking..13

 6 Performance Issues..14

 7 References...15

 8 Appendix..16

 8.1 Use Cases..16

 8.1.1 Storage vs Bit Preservation...16

 8.1.2 HTTP Read Rate, Open Access Data...16

 8.1.3 Rights Management, Possibility to Delete Data...16

 8.1.4 Update, Delete and Versions...17

 8.1.5 Establishing Context of the Data Through References in the PIDs..............................17

 8.1.6 "Behaviours" of Objects Attached to the Basic Storage Service..................................17

 8.1.7 Bulk Ingest and Access...18

3/18

Version 2.0 2021-09-21

 1 Requirements of the Basic Storage Service API
• The API concentrates on bitstream preservation, but could be reusable as a general

simple storage API.

• Based on the REST architectural style as described in [Fielding2011].

• Use of HTTPS/SSL.

• AAI functions will be covered – if possible – with HTTP authentication (SAML
assertions and/or session IDs should be usable).

• Administrative metadata management will be provided.

• Since that API is likely to be extended, explicit versioning of the interface should be
provided.

• Strict separation of create and update calls: An update can only be done with a
HTTP PUT call on already existing resources (because you can't address a
resource that doesn't yet exist!). A create call can be done using a HTTP POST on
the storage resource itself. The storage implementation then will create a new ID for
the resource to create, and delivers back its ID.

• Basic Storage Service will offer only a weak form of data consistency. In case of
concurrent update and retrieval, it is only guaranteed that the resource
representation sent back to the service client always is consistent (see Optimistic
Locking).

 2 Functionalities not covered by the Basic Storage Service
…but may be provided by DARIAH High Level Services.

• Community specific (descriptive) metadata management like indexing, searching,
etc. (metadata can only be stored as a file).

• Technical metadata management, e.g. creating or storing JHOVE technical
metadata providing detailled technical information on file format and version, validity
and even more sophisticated metadata for curation usage.

• Versioning and revision management.

• Bulk ingest of many files, including transaction handling.

• Persistent identifier management (e.g. the GWDG Handle Service).

• Accounting is not part of the API.

 3 Basic Storage Service Architecture
The Storage Service is working on representation level, so every API call is working for
one representation, e.g. a file identified by an URL containing its ID. The Storage Service
itself can be addressed by an URL itself, e.g. for POSTing new representations of files to
the Storage Service.

4/18

Version 2.0 2021-09-21

Figure 1: General DARIAH Storage Architecture

Thus this Basic Storage Service API is represented by the Access Layer in the picture
above. The AAI is handled in the API (e.g. by containing authentification and authorisation
information), not in the Basic Storage Service implementations, respectively the service
implementation will be simply relaying that information to the AAI service, and requests
access. Furthermore the Data Management & Repository Services represent the Basic
Storage Service implementations, including metadata management for basic storage
purposes (e.g. LastModified timestamps, etc.) and management of Basic Data Services
and Adapters (e.g. the question, which repository shall be used by the user
authenticated).

Higher level services like community and technical metadata management, versioning and
revision management, bulk ingest, and PID management will be provided by the DARIAH
High Level Data Services

Each of the actions described below must be processed as an atomic action.
Asynchronous or concurrent service calls must not be lead to inconsistent data.

5/18

Version 2.0 2021-09-21

 4 DARIAH RESTful Storage API
The DARIAH RESTful Storage API is based on the REST architectural style as described
in [Fielding2011]. In principle “REST components perform actions on a resource by using a
representation”. Furthermore unless stated otherwise the API implements the semantics of
the HTTP method, Headers and Error as defined in [rfc2616].

Resources are addressed by URLs, and the actions to perform on a representation will be
performed by using some of the basic HTTP methods to achieve basic CRUD operations
on the resources (create, retrieve, update, and delete).

The general form of the RESTful request URL is:

http://<service-base-url>/[<ID>]

where <service-base-url> represents the storage service's base URL, and <ID>
represents the resource (e.g. a file or the storage service itself) that shall be worked with.

 4.1 AAI Integration

In general every service call using AAI as described in [DARIAH PDP] needs to send the
header and body data as given in the following HTTP POST example. If no HTTP body is
needed for the HTTP method used, the use of multipart messages is not necessary.

 4.2 HTTP POST

Via POST a new resource is being created. You have to address the Storage Service
directly with it's resource name, because you do not yet have an URL to the resource to
be created, because it has not been created yet.

POST

Request

Service URL Mandatory The service's location.

Version String Optional The API version.

Authorization String Optional Access token as described in
[DARIAH PDP].

X-Transaction-ID String Optional A logID that should be used in the
services log files.

Content-Type Mime Mandatory Content-Type of the provided data.

PID URI Optional A persistent identifier that points to
an aggregation the resource
belongs to. It can be used to
aggregate resources on Storage
Service Implementation Level [UC3
CF].

Data Octet-Stream Mandatory The file's content.

6/18

Version 2.0 2021-09-21

Response

Code 201 Created

Location URL Mandatory Returns the URL of the resource.

Last-Modified DateTime Mandatory Last modification date.

Etag String Optional Opaque resource version ID.

Side effects Creates a new resource.

Errors 401 Unauthorized

405 Method Not Allowed (POST on an already existing resource)

503 Service unavailable

500 Internal Server Error

General request

UA: POST / HTTP/1.x

UA: Host: <Service>

[UA: Version: <Version>]

[UA: Authorization: bearer <Access-Token>]

[UA: X-Transaction-ID: <logID>]

[UA: PID: urn:dariah:x53981]

UA: Content-Type: <Content-Type>

UA: <Data>

Example request (no auth)

UA: POST / HTTP/1.x

UA: Host: storage.dariah.eu

UA: Version: 1.0

UA: Content-Type: text/xml

UA: <xml><kindof>This is XML</kindof></xml>

Example response

OS: HTTP/1.x 201 Created

OS: Location: http://storage.dariah.eu/urn:dariah:578x

OS: Content-Type: text/xml

OS: Transfer-Encoding: chunked

OS: Date: Thu, 09 Feb 2012 08:12:31 GMT

OS: Last-Modified: Thu, 03 Jul 2008 10:44:34 GMT

OS: Etag: "478fb2358f700"

 4.3 HTTP GET

Via GET a resource is being retrieved. The API provides only a weak consistency, that is

7/18

Version 2.0 2021-09-21

in case of concurrent GET and PUT, the service client can assume that either the old
version of the resource (before a concurrent update) or the newer version of the resource
(after a concorrent update) will be provided, and not a mixture of old and new.

GET is a safe method [rfc2616], i.e. the request has no side-effects and can be repeated
to produce the same effect.

GET

Request

Service URL Mandatory The service's location.

ID Identifier Mandatory The ID of the file to retrieve.

Version String Optional The API version.

Authorization String Optional Access token as described in
[DARIAH PDP].

X-Transaction-ID String Optional A logID that should be used in the
services log files.

Response

Code 200 OK

204 No Content

304 Not Modified

Content-Type Mime Mandatory Content-Type of the provided data.

Last-Modified DateTime Mandatory Last modification date.

Etag String Optional Opaque resource version ID.

Data Octet-stream Mandatory The resource's content.

Side effects None.

Errors 401 Unauthorized

404 Not Found

503 Service unavailable

500 Internal Server Error

General request

UA: GET <ID> HTTP/1.x

UA: Host: <Service>

[UA: Version: <Version>]

[UA: Authorization: bearer <Access-Token>]

[UA: X-Transaction-ID: <logID>]

[UA: If-None-Match: <Etag>]

Example request (no auth)

8/18

Version 2.0 2021-09-21

UA: GET /urn:dariah:578x HTTP/1.x

UA: Host: storage.dariah.eu

UA: Version: 1.0

UA: If-None-Match: "478fb2358f700"

Example response

OS: HTTP/1.x 200 OK

OS: Content-Type: text/xml

OS: Content-Length: 123

OS: Transfer-Encoding: chunked

OS: Date: Thu, 09 Feb 2012 08:12:31 GMT

OS: Last-Modified: Thu, 03 Jul 2008 10:44:34 GMT

OS: Etag: "478fb2358f700"

OS: <xml><kindof>This is XML</kindof></xml>

 4.4 HTTP HEAD

Via HEAD a resource is being retrieved without the content itself (HTTP header only). It
provides exactly the same header structure as a full-blown GET would do.

HEAD is a safe method, i.e. the request can be repeated without side-effects and produce
the same result.

HEAD

Request

Service URL Mandatory The service's location.

ID Identifier Mandatory The ID of the file to retrieve.

Version String Optional The API version.

Authorization String Optional Access token as described in
[DARIAH PDP].

X-Transaction-ID String Optional A logID that should be used in the
services log files.

Etag String Optional The Etag of the resource, given by
the server.

Response

Code 200 OK

304 Not Modified

Content-Type Mime Mandatory Content-Type of the requested
resource.

Last-Modified DateTime Mandatory Last modification date.

9/18

Version 2.0 2021-09-21

Etag String Optional Opaque resource version ID.

Side effects None.

Errors 401 Unauthorized

404 Not Found

503 Service unavailable

500 Internal Server Error

General request

UA: HEAD <ID> HTTP/1.x

UA: Host: <Service>

[UA: Version: <Version>]

[UA: Authorization: bearer <Access-Token>]

[UA: X-Transaction-ID: <logID>]

[UA: If-None-Match: <Etag>]

Example request (no auth)

UA: HEAD /urn:dariah:578x HTTP/1.x

UA: Host: storage.dariah.eu

UA: Version: 1.0

UA: If-None-Match: "478fb2358f700"

Example response

OS: HTTP/1.x 200 OK

OS: Content-Type: text/xml

OS: Content-Length: 123

OS: Date: Thu, 09 Feb 2012 08:12:31 GMT

OS: Last-Modified: Thu, 03 Jul 2008 10:44:34 GMT

OS: Etag: "478fb2358f700"

 4.5 HTTP PUT

Via PUT a resource is being updated.

PUT is an idempotent method [rfc2616], that is the side-effect of a series of identical PUT
requests is exactly equivalent to the side-effect of a single request.

PUT

Request

Service URL Mandatory The service's location.

ID Identifier Mandatory The ID of the file to store.

10/18

Version 2.0 2021-09-21

Version String Optional The API version.

Content-Type Mime Mandatory Content-Type of the provided data.

Authorization String Optional Access token as described in
[DARIAH PDP].

X-Transaction-ID String Optional A logID that should be used in the
services log files.

PID URI Optional A persistent identifier that points to
an aggregation the resource
belongs to.It can be used to
aggregate resources on Storage
Service Implementation Level [UC3
CF].

Data Octet-Stream Mandatory The file's content.

Response

Code 201 Created

Last-Modified DateTime Mandatory Last modification date.

Etag String Optional Opaque resource version ID.

Side effects The resource is updated.

Errors 401 Unauthorized

404 Not Found

409 Conflict (resource has not not been updated due to a
concurrent API call, see optimistic locking)

503 Service unavailable

500 Internal Server Error

General request

UA: PUT <ID> HTTP/1.x

UA: Host: <Service>

[UA: Version: <Version>]

[UA: Authorization: bearer <Access-Token>]

[UA: X-Transaction-ID: <logID>]

[UA: PID: urn:dariah:x53981]

UA: Content-Type: <Content-Type>

UA: <Data>

Example request (no auth)

UA: PUT /urn:dariah:578x HTTP/1.x

UA: Host: storage.dariah.eu

UA: Version: 1.0

11/18

Version 2.0 2021-09-21

UA: Content-Type: text/xml

UA: <xml><kindof>This is XML</kindof></xml>

Example response

OS: HTTP/1.x 201 Created

OS: Location: http://storage.dariah.eu/urn:dariah:578x

OS: Content-Type: text/xml

OS: Transfer-Encoding: chunked

OS: Date: Thu, 09 Feb 2012 08:12:31 GMT

OS: Last-Modified: Thu, 03 Jul 2008 10:44:34 GMT

OS: Etag: "478fb2358f700"

 4.6 HTTP DELETE

Via DELETE a resource is being deleted.

DELETE is an idempotent method, that is the side-effect of a series of identical DELETE
requests is exactly equivalent to the side-effect of a single request.

DELETE

Request

Service URL Mandatory The service's location.

Version Identifier Optional The API version.

ID Identifier Mandatory The ID of the file to store.

Authorization String Optional Access token as described in
[DARIAH PDP].

X-Transaction-ID String Optional A logID that should be used in the
services log files.

Response

Code 204 No Content

Last-Modified DateTime Mandatory Last modification date.

Side effects Deletes the resource.

Errors 401 Unauthorized

404 Not Found

409 Conflict (resource has not been deleted due to a concurrent
API call, see optimistic locking)

503 Service unavailable

500 Internal Server Error

General request

12/18

Version 2.0 2021-09-21

UA: DELETE <ID> HTTP/1.x

UA: Host: <Service>

[UA: Version: <Version>]

[UA: Authorization: bearer <Access-Token>]

[UA: X-Transaction-ID: <logID>]

Example request (no auth)

UA: DELETE /urn:dariah:578x HTTP/1.x

UA: Host: storage.dariah.eu

UA: Version: 1.0

Example response

OS: HTTP/1.x 204 No Content

OS: Date: Thu, 09 Feb 2012 08:12:31 GMT

 4.7 HTTP OPTIONS

Via OPTIONS the client requests information about the HTTP methods the server
implements. Maybe there are service implementations that do e.g. read only.

OPTIONS

Service URL Mandatory The service's location.

Version Identifier Optional The API version.

General request

UA: OPTIONS * HTTP/1.x

UA: Host: <Service>

[UA: Version: <Version>]

Example request

UA: OPTIONS * HTTP/1.x

UA: Host: storage.dariah.eu

UA: Version: 1.0

Example response

OS: HTTP/1.x 200 OK

OS: Date: Thu, 09 Feb 2012 08:12:31 GMT

OS: Allow: OPTIONS, GET, HEAD, POST, PUT, DELETE

OS: Content-Length: 0

 5 Optimistic Locking
The Basic Storage Service uses optimistic locking for ensuring data consistency. It locking

13/18

Version 2.0 2021-09-21

pertains to update operations for all resources of the DARIAH Basic Storage Service. It is
automatically enforced by the service without any user interaction. The main goal is to
avoid conflicts between two concurrent update operations on the same resource.
Optimistic locking acts on the assumption that conflicts occur rarely. Typical locking
strategies necessitate the locking of a resource for retrieve (read) operations as well,
which can impair many users, especially in scenarios with a high read-to-write ratio.

Optimistic locking always allows retrieving resources. However, it cannot avoid that a
concurrent user overwrites a resource while another user is still modifying it locally; it just
can detect the conflict and notify users. The typical flow of actions for an update operation
with optimistic locking is as follows:

• The user retrieves a resource. Its representation contains a last-modification-date
attribute automatically set by the storage service.

• The user modifies the resource representation locally.

• The user stores the modified resource back to the originating service by invoking
the update() method.

• The service compares the last-modification-date attribute in the representation with
the last-modification-date of the latest version of the object stored in the repository.
If the latter date is newer, the originally retrieved version has been meanwhile
overwritten by a concurrent user. To avoid a conflict, the service will not execute the
update, but raise an exception to inform the user about the conflict.

Optimistic locking is only relevant for update operations. Create operations are by
definition not affected by concurrency. Delete operations have the ultimate goal to remove
a resource, so an intermediate update of the resource by a concurrent user should not
block the deletion. Retrieve operations are always possible.

 6 Performance Issues
Current version of the API covers only very basic usages of the Basic Storage Service. It is
likely that the API would be extended in the future. In particular the performance issues will
be addressed when occurred. It is expected that the future version of the API support
following basic extensions on that filed:

• Conditional operations: for GET and PUT, HTTP headers If-Modified-Since: Date
time, If-Match: Etag, will be used. So that the service client has a possibility to
request a resource only when it was updated since the last access time. Support of
these HTTP features will allow for content caching on local sites.

• In order to deal with larger resources efficiently, partial GET might be supported.
This might be realized via HTTP range header and status code 206 (Partial
Content). Client will be then able to request only a subset of bytes for a given
resource.

• Since the process of ingesting data might take more time (e.g. due to a
sophisticated content validation or integrity checks), API might provide
asynchronous uploads. In such cases server will response to a POST request with
202 Accepted and URI for the resource which will be created later.

14/18

Version 2.0 2021-09-21

 7 References

[Fielding2000] Fielding, Roy Thomas: „Architectural Styles and the Design of
Network-based Software Architectures“, 2000

[handle] https://handle.net/

[rfc2616] HTTP 1.1 Standard (RFC)

[DARIAH PDP] Using OAuth2 to integrate RESTlike web services into a SAML-
based federation – Implementation of a Policy Decision Point –

[UC3 CF] UC3 Curation Foundations, Rev. 0.13 (2010-03-25)

15/18

Version 2.0 2021-09-21

 8 Appendix

 8.1 Use Cases

The following use-cases not only describe the requirements for the Basic Storage Service
(including bit preservation), but additionally the functionalities of higher level services, that
are not covered by the Basic Storage Service API. The Basic Storage Service will most of
the time be only accessed indirectly using graphical user interfaces and/or higher level
services that do access the Basic Storage Service via the Basic Storage Service API.

 8.1.1 Storage vs Bit Preservation

$Scholar at a German center for digital humanities ($GCDH) has finalised her work
on a DFG-funded research project (German Research Foundation). As part of the
contractual requirements, $Scholar committed herself to retaining the results of the
research project for at least 10 years. However, $Scholar worked on a temporary
contract and after the research project has completed, she moved on to another
DH-centre in India. The research data would have been lost.
Fortunately, $GCDH has established policies and technical mechanisms to store all
the data of its employees in a preservation vault (storage). Although that vault does
not yet validate the data and does not ensure the availability of research metadata,
the data are forwarded to the DARIAH Basic Storage Service for long-term
availibility.1 The contract between $GCDH and the service provider ensures that the
data will be preserved without accidental changes to the original bit-stream for a 10-
year period. After 10 years, the service provider informs the $GCDH about the
pending end of the retention period. The $GCDH may then decide to either extend
the retention period or dispose of the data.

 8.1.2 HTTP Read Rate, Open Access Data

$Scholar from the Digital Humanities Centre in Urbana, US, aims to access an
image – stored in DARIAH Basic Storage Service – via her web browser. $Scholar
determined the URL of the image via a dedicated web catalogue. The image is
Open Access, so she is able to view the image with adequate HTTP read rate for
web viewing.

 8.1.3 Rights Management, Possibility to Delete Data

$Institute has been working on the literary remains of the author Thomas Bernhard
since 1991. For bitstream preservation purposes they stored the data in the
DARIAH Basic Storage Service. Through his last will and testament, some of the
works of Thomas Bernhard are closed for public for several more decades. Even
though $Institute carefully rights-managed the data (including authorisation
mechanisms provided by Basic Storage Service), the literary executor sued them

1 Other aspects of bit preservation have been defined by WissGrid:
http://www.wissgrid.de/workgroups/ap3/2011-03-08--bitstream-
preservation.pdf

16/18

http://www.wissgrid.de/workgroups/ap3/2011-03-08--bitstream-preservation.pdf
http://www.wissgrid.de/workgroups/ap3/2011-03-08--bitstream-preservation.pdf

Version 2.0 2021-09-21

and they are now required by law to delete all traces of Bernhard texts from the
Basic Storage Service.

 8.1.4 Update, Delete and Versions

$Student is in the key phase of her PhD thesis, and she works heavily on the text.
Since she does not trust the safety of her laptop in her shared flat, she prefers to
store the data online in a trusted storage. She prefers a service that internally uses
the DARIAH Basic Storage Service for bitstream preservation. Every day she
uploads numerous updates of the Microsoft Word source files. These updates are
transient and do not need to be re-accessed (overwriting the source). Only after
finalising a chapter (which is roughly every week), she uploads a new version with a
new file name that receives persistent identification and can be re-accessed later.

 8.1.5 Establishing Context of the Data Through References in the
PIDs

$Scholar is searching for a specific bit of evidence for her work on the 1st world
war. She happens to find a digitised letter written by a Serbian soldier, that
contradicts her theory. Before refuting her work of the last 3 years, she carefully
scrutinises the letter to establish its trustworthiness.
The trustworthiness of research data is inherently tied to the research context they
have been created in. However, the DARIAH Basic Storage Service offers storage
facility “as a black box”, without knowing about the nature of the data or whether it
contains resp. links to research data.
Instead the context of the data may be established through the Persistent Identifier
(PID) system (in our case often: Handle [handle]). Thereby, the PID references both
the data (in the Basic Storage Service) as well as the metadata (stored in a
separate file in the Basic Storage Service or in another system altogether). On top
of that, the PID may include checksums (for either data and metadata, or for both)
to ensure the integrity of the object over time. It is recommended that the metadata
is exposed as an OAI-ORE description, that references all (potentially distributed)
data components as well as any "behaviours"2 of the objects.

 8.1.6 "Behaviours" of Objects Attached to the Basic Storage
Service

$Scholar from the Digital Humanities Centre in Urbana, US, aims to access an
image (stored in DARIAH Basic Storage Service, available as Open Access) via her
web browser. The image is more than 150 MB, but the service provides her with an
image that was scaled and compressed on-the-fly to only 1 MB for adequate read
rate and suitable web viewing.
→ http://digilib.berlios.de/
→ http://djatoka.sourceforge.net/

2 For a definition of "behaviours" or "disseminators" see e.g.
http://www.cs.cornell.edu/payette/papers/ecdl98/fedora.html

17/18

http://djatoka.sourceforge.net/
http://digilib.berlios.de/
http://www.cs.cornell.edu/payette/papers/ecdl98/fedora.html

Version 2.0 2021-09-21

 8.1.7 Bulk Ingest and Access

$Research-Network is working on the literary remains of painter Markus
Prachensky. They are in the process of digitising his key works (mainly paintings,
only few hand sketches) and aim to link them to the works of Mondrian and other
abstract artists. The digitisations are often huge (several 100 MBs) and are ingested
in bulk to the DARIAH Basic Storage Service (with access restricted to only key
members of the $Research-Network) from their Apple server environment. After a
year of work, $Research-Network initiates a cooperative research project with the
Mondrian research network, who bulk-download all the images to analyse and
compare the color schemes and shading through their image mining mechanisms.

18/18

	1 Requirements of the Basic Storage Service API
	2 Functionalities not covered by the Basic Storage Service
	3 Basic Storage Service Architecture
	4 DARIAH RESTful Storage API
	4.1 AAI Integration
	4.2 HTTP POST
	4.3 HTTP GET
	4.4 HTTP HEAD
	4.5 HTTP PUT
	4.6 HTTP DELETE
	4.7 HTTP OPTIONS

	5 Optimistic Locking
	6 Performance Issues
	7 References
	8 Appendix
	8.1 Use Cases
	8.1.1 Storage vs Bit Preservation
	8.1.2 HTTP Read Rate, Open Access Data
	8.1.3 Rights Management, Possibility to Delete Data
	8.1.4 Update, Delete and Versions
	8.1.5 Establishing Context of the Data Through References in the PIDs
	8.1.6 "Behaviours" of Objects Attached to the Basic Storage Service
	8.1.7 Bulk Ingest and Access

